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Great advances in transdermal delivery of macromolecules have been
made within the last few years using ultradeformable liposomes,
electroporation, and low-frequency ultrasound, each of which has been
shown to deliver macromolecules at clinically-useful rates. Transdermal
drug delivery is a potentially useful method by which macromolecules,
such as proteins, could be administered for local or systemic therapy.
Until recently, transdermal delivery was not a realistic option, since
skin's great barrier properties had prevented transport of
macromolecules across human skin at therapeutically-relevant rates. In
this chapter, chemical, electrical, and ultrasonic delivery methods are
reviewed. Mechanistic perspective, a summary of key experimentaj
findings, and an assessment of potential for impact on medicine are
provided for each enhancement technique.

Biotechnology has produced a generation of novel macromolecular compounds with
great therapeutic promise. While a number of challenges sometimes slow progress of
these new drugs 10 clinical application, difficulties in meeting their special drug delivery
requirements can be a significant impediment. This is because biologically-active
macromolecules, such as proteins, generally have low oral bioavailability, making oral
administration difficult, and often have short biological haif-lives, making parenteral
delivery impractical outside a hospital setting (/-3). Delivery of drugs across the skin
addresses these problems by offering a number of potential advantages compared to
conventional methods, such as pills and injections: (1) no degradation due to stomach,
intestine, or first pass of the liver, (2) likely improved patient compliance because of a
user-friendly method, and (3) potential for steady or time-varying controlled delivery
(4-9). However, delivery of therapeutic quantities of macromolecules across human
skin is extremely difficult. This chapter describes the current status of transdermal
drug delivery, focusing on recent advances involving the modification of skin's barrier
properties, which indicate that transdermal delivery of macromolecules (> 1 kDa) may
now be possible.
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Transdermal drug delivery. The advantages of delivery across skin have led to
the clinical success of a number of transdermal products, indicated by annual sales in
excess of one billion dollars. Transdermal drugs approved by the United States Food
and Drug Administration (FDA) include clonidine, estradiol, fentanyl, lidocaine,
nicotine, nitroglycerin, scopolamine, and testosterone (/0).

Applications of transdermal drug delivery are limited largely by skin's great barrier
propetties, which prevent transdermal diffusion of most compounds at therapeutic rates
(4-9). Drugs which have been successfully delivered (i.e., the FDA-approved drugs
listed above) cach share three common traits: effectiveness at relatively low doses,
molecular mass less than 400 Da, and lipid solubility. While proteins and other
macromolecular drugs are often effective at low doses, they generally are much larger
than 400 Da and have very poor lipid solubility, which explains their extremely slow
percutancous absorption.

Pathways for transport across the skin's stratum corneum. The outer 10 -
15 pm of human skin is the stratum corneum (/1), a dead layer of tissue which
provides the primary and extremely effective barrier 10 transdermal transport (Figure 1)
(12-14). Below is the viable epidermis, which consists of living celis, but is devoid of
nerves and blood vessels. Deeper still is the dermis, which also contains living cells,
in addition to bloud vessels and nerves. While most drugs (raverse the stratum
corneum very slowly, they diffuse with great ease through decper tissues to the
capillary bed in the dermis (4-9).

The stratuin corneum’s barrier properties are generally attributed to multilamellar
lipid bilayers which fill the extracellular spaces (15, 16). The bulk of stratum corneum
1s composed of flattened cells called keratinocytes, which are filled with cross-linked
keratin. Their relatively permeable cell interiors are not normally accessible for
transport, since they are surrounded by the relatively impermeable intercellular lipids.
Unlike the phospholipid bilayers of cell membranes, these intercellular bilayers contain
very few phospholipids, being composed primarily of ceramides, cholesterol, und fatty
acids (/7).

There are three transport pathways across the skin which molecules are likely to
follow (Figure 2). One involves transport directly across the bulk of stratutn comeumn,
where a molecule must sequentially cross keratinocytes and intercellular lipid bilayers.
Normally, this route is not available to most molecules, because it involves crossing on
the order of 100 interceliular bilayers, which is energetically unfavorable (18), and is
therefore extremely slow. Another pathway reduces the number of bilayer crossings
by following a tortuous path exclusively within the intercellular lipids, where drugs
travel predontinantly along the multilamellar bilayers, rather than across them. This
route is probably taken by small drugs which diffuse across the skin (/9-22). The
third pathway, often termed the “shunt” route, avoids the intercellular lipid bilayers
altogether by following a path within sweat ducts and hair follicles. Although the
shunts make up only a small fraction of the skin (~ 0.1 % (12)), this route is important
for transport of charged compounds, especially when electrophoretically driven by an
imposed electric ficld (see below) (23-27).

Because stratum corneum lipids limit transport of most compounds, efforts 1o
increase transdermal delivery have often focused on altering lipid bilayer structure to
increase permeability. Modification of skin's barrier properties in this way has been
achieved by chemical and physical approaches. Recent advances in this field, most of
which have been published since 1995, suggest that the tools needed for transdermal
delivery of macromolecules are now available.
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Figure 1. A composite representation of the anatomical structures found in
mammalian skin. The outermost layer, stratum corneum, provides the primary
resistance to transdermal transport of most compounds. Because the epidermis
is avascular, drugs must reach the capillaries (or lymphatic vessels) in the dermis
for systemic administration. Reproduced with permission from reference (13).
Copyright 1991 CRC Press, Inc.
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Modification of Skin's Barrier Properties.

Chemical enhancers can_alter the skin's lipid environment. Because
transport across skin by passive diffusion is too slow for most applications, the effccts
of a broad variety of chemicals on transdermal drug delivery have been investigated.
Although extensively studied, their potential for significant impact on macromolecule
delivery has not been demonstrated.

Mechanistic perspective. Transdermal transport by the tortuous intercellular
route followed by most drugs can be viewed as a two-step process: (1) drug must first
partition from an external donor solution into the skin's lipids and then (2) diffuse
across the stratum comeurn within the lipid domain. Models based on this approach
have successfully described transdermal transport (79, 22, 28-32). Chemical enhancers
should therefore be effective if they alter the skin’s lipid environment in ways which
(1) increase drug solubifity in skin and/or (2) increase drug diffusivity in skin.

Experimental transdermal permeability values for some hydrophilic compounds are
inconsistent with transport via an intercellular lipid route and have led to the hypothesis
that there are additional hydrophilic pathways, sometimes called "aqueous pores™ (33-
37). The physical nature of these pathways remains controversial, but may represent
hydrophilic domains within the bulk of stratum corneum. Others suggest that diffusion
through hair follicles and sweat ducts may be significant (33, 38, 39).

Experimental findings. Chemical approaches 1o increasing transport have
received extensive attention from the transdermal community (4-9, 40, 41). Most
effective chemical enhancers act by disrupting or fluidizing lipid bilayer structures
within the stratum corneum, thereby increasing drug diffusivity within the skin.
Examples include dimethyl sulfoxide (DMSQO), Azone (1-dodecylazacycloheptan-2-
one), unsaturated fatty acids (e.g., oleic acid, linoleic acid), and surfactants (e.g.
sodium dodecyl sulfate). Chemical enhancers have been shown to increase transdermal
transport of small compounds by as much as orders of magnitude, but also frequency
cause signifcant skin imritation and may affect drug stability (4-9, 40, 41). However,
studies addressing chemical enhancement of macromolecules report only modest or no
enhancement under clhinically-relevant conditions (42-50).

Potential for impact. Despile extensive rescarch, chemical enhancers have so far
had little practical impact on transderinal delivery beyond preclinical studies. While
ethanol is used in FDA-approved formulations (/0), other enhancers with much greater
effects on skin permeability have not yet found clinical acceptance due largely (o sufety
concerns and the costly FDA approval process. Moreover, although transderinat
delivery of small molecules is significantly increased by a number of different chemical
additives, delivery of proteins and other mucromolecules generally is not.

Liposomes facilitate transdermal transport by a poorly understood
mechanism. Encapsulation of drugs within liposomes has been studied for many
drug delivery apphcations, including transdermal delivery. Liposomes are spherical
lipid bilayer membranes which surround an agueous interior. In addition to being
found in hundreds of cosmetic formulations, liposomes are currently used to enhance
transderinal transport of low molecular weight drugs in some pharmaceutical products
(51-54). Recent laboratory studies indicate that liposomes may also play a usefuf role
in transdermal delivery of macromolecules.

Mechanistic perspective. It is again useful (o consider transdermal transport as
a two-slep process, involving partitioning and diffusion. The ability of liposomes to
facilitate drug partitioning into skin is generally accepted (5/-54). Liposomes can be

-
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lipids 1s usually followed by smali compounds diffusing through normai or
chemically-modified skin. (2) Transcellular pathways, which cross both the
cells and intercellular lipids of stratum corneum, may only be accessible
following skin permeabilization by electroporation or ultrasonic cavitation. (3)
during iontophoretic and liposomal transport.

Figure 2. Three primary routes across the stratum corneum are available for
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used with lipophilic drugs, which localize within the liposome's lipid bilayer shell, and
with hydrophilic drugs, which localize within the aqueous interior. In either case, an
interaction of liposomes with the lipids of the stratum corneum could increase drug
entry into the skin. Partitioning could be enhanced by liposomes which provide a high
local drug concentration at the skin surface. Adsorption or fusion of liposomes onto
stratum corneum lipid bilayers could also promote drug partitioning into skin.

The role of liposomes in enhancing the second step in the transport process —
diffusion across the stratum comeum — remains controversial. Most researchers agree
that conventional liposomes do not serve as drug carriers which cross the bulk of
stratum corneum as intact vesicles (54-56). Enhanced drug diffusion within stratum
comeum could result from liposomal lipids becoming incorporated into stratum
corneum bilayers, thereby acting as chemical enhancers which fluidize or otherwise
change lipid properties to facilitate transport (57).

Under special circumstances, some suggest that liposomes cross the stratum
corneumn as intact vesicles. The hair follicles may provide a shunt route through which
liposomes could cross the stratum cormeum and deposit drug deep within the skin,
primarily within or near hair follicles (58, 59). Moreover, liposome formulations
designed to make vesicle shape very deformable might penetrate intact skin more

readily (60, 61).

Experimental findings. Liposomes have been shown to increase topical and
transdermal delivery of a variety of low molecular weight compounds (57-54).
Moreover, it has been shown that liposomes can increase drug localization within the
skin while decreasing systemic distribution (62-64). This has made the use of
liposomes a popular enhancement technique for local drug delivery in dermatological

applications.

Delivery of macromolecules can also be enhanced by liposomes, where transport is
usually localized within hair follicles. Increased macromolecule penetration into skin
has been shown following topical administration with liposomes for cyclosporin (1.2
kDa) (62, 65), a DNA repair enzyme (16 kDa) (66), v-interferon (16 - 25 kDa, in
monomeric form) (67), c-interferon (18 - 20 kDa) (65), melanin (68), superoxide
dismutase (33 kDa) (69), a monoclonal antibody (~150 kDa) (70), and DNA (1 kb)
(71). These studies generally used animal skin in vivo, in vitro, or from histoculture.
Some studies have directly shown localization of these compounds within follicles,
while others have inferred it. It has not been clearly shown that intact liposomes
penetrate deep into follicles without breaking up. Moreover, some studies indicate that
molecules need not be encapsulated within liposomes for increased follicular
penetration, but can be co-administered in solution (72). This suggests thal intact
liposomes may not carry drug across the skin, but enhance transport by a different
mechanism.

To facilitate liposome penetration into skin, uitradeformable liposomes (termed
“transfersomes”) have been developed through the addition of bile salts to liposome
bilayers (60, 61). Enhanced transport of a number of small drugs has been shown
using this approach, including the clinical delivery of lidocaine to increase local
anesthesia (73). Studies which demonstrate systemic delivery of macromolecules
across the skin have used insulin (5.8 kDa, in monomeric form) (74), bovine serum
albumin (69 kDa) (75), and gap junction protein (> 178 kDa) (75) (Figure 3). These
liposomes must be applied non-occlusively so that the formulation dries, thereby
potentially enhancing an osmotic driving force for transport (60). It has been proposed
that ultradeformable liposomes cross the skin as intact vesicles, following a non-
follicular pathway and being taken up by the lymphatic system before entering systemic

circulation (61).
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Figure 3. Immune response to (A) gap junction protein or (B) bovine serum
albumin given to mice either by injection (E) or topical application ().
Immunogenic protein was administered with mixed micelles (soybean
phosphatidylcholine (SPC) and bile salt at I:1 mole ratio} or encapsuluted within
liposomes, either "conventional” (SPC only) or ultradeformable (SPC and bile
salt at 9:2 mole ratio). Antibody titers were determined by the serum-dependent,
complement-mediated lysis of antigen-sensitized liposomes. Topically applied
protein elicited an immune response equal to that caused by injection only when
administered with ultradeformable liposomes. Standard deviation bars are

shown. Reproduced with permission from reference (75).
Copyright 1995 VCH Verlagsgesellschaft mbH.
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Potential for impact. Although only a limited number of studics address
liposomal delivery of macromolecules, they demonstrate penetration of large
compounds into or across skin. Topical delivery of macromolecules to hair follicles
has a number of potential clinical applications. Reports on systemic macromolecule
delivery using ultradeformable liposomes offer still more possibilities.

Iontophoresis provides an_electrical driving force for fransdermal

transport. As an alternative to enhancing transport by modifying the chemical
environment in skin, the possibility of driving drugs across skin by the application of
an electric field has received considerable attention, especially since the mid 1980s.
Extensive in vitro, in vivo, and clinical study, coupled with a few commercia
products, suggest that iontophoresis is a viable means of enhancement. Nevertheless,
therapeutic delivery of macromolecules across human skin has been difficuit to achieve.

Mechanistic perspective. Application of an electric field across the skin can
enhance transdermal transport of both charged and uncharged drugs by electrophoresis
and/or electroosmosis. A charged compound in an electric field moves by
electrophoresis at a rate determined by the product of the electric field strength and the
compound's mobility (a function of molecular size and charge) in the surrounding
medium (i.e., the skin) (76). Electrophoretic enhancement is often possible, since
many drugs have a net charge, including most macromolecules of therapeutic interest.

Because the skin carries a net fixed negative charge, transdermal transport of
positively-charged ions is favored. As a result, during iontophoresis there is a net flux
of ions from the anode to the cathode, which provides a convective driving force for
transport across the skin, termed electroosmosis (77). With the proper electric field
orientation, this effect can be used to enhance transport of uncharged compounds.
Moreover, positively-charged drugs delivered across the skin by electrophoresis will be
further enhanced by electroosmosis. However, electroosmosis will oppose
electrophoretic transport of negatively-charged drugs. Theoretical models have been
developed which describe transdermal electrophoresis and electroosmosis (22, 77-79).
While some studies suggest that during iontophoresis ions cross the stratum comeum
via the tortuous intercellular routes followed during passive diffusion (80, 81), others
identify appendageal shunts as the primary pathways (23-27).

Electrical studies show that exposure of skin to transdermal voltages of
approximately one volt or more reduces skin resistance. At typical iontophoretic
voltages (< 10 V), human skin resistivity drops one to two orders of magnitude (from
100 kQ-cm?) over a timescale of seconds to tens of minutes (24, 27, 82-88). Lowered
skin resistance and increased skin permeability can persist after the electric ficld is
removed, demonstrating either partial or full reversibility over a timescale of minutes to
hours. Mechanistically, this has been explained by voltage-dependent rearrangements
in skin microstructure (79, 87) and by an electroosmotic mechanism (85). These
electrical measurements suggest that electric fields are capable of not only driving
molecules across skin, but directly changing skin barrier properties. The possibility of
utilizing electric fields in this way has received some attention (24, 77, 87), with recent
efforts directed outside the context of traditional iontophoresis, as described below (see
Electroporation).

Experimental findings. Transdermal iontophoresis of small compounds has
been the subject of extensive in vitro and in vivo studies, some of which have led to
clinical success (89-92). Today, commercial products exist for iontophoresis of:
pilocarpine to induce sweating as part of a cystic fibrosis screening test (e.g., CF
Indicator, Medtronic, Inc., Minneapolis, MN) (93), tap water as a treatment for
hyperhidrosis (e.g., Drionic, General Medical Co., Los Angeles, CA) (94), and
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i 1 s from an " e device ., lontocaine
lidocaine and other therapeutic agents from an "all-purpose device (cg N
and Phoresor, IOMED, Inc., Salt Lake City, UT) (95). lonlo.phorems‘ls'gencrally well
tolerated, although mild skin irritation, erythema, and non-painful sensation are

sometimes reported. . N
lonlophorrc):sis of macromolecules has been more difficult than electrically-assisted

1 31 ¥ ounds (6, 8 96). Those reporting success have generally not
323?:3;5&:312,ﬁ?&?ﬁave deEnonslral)cd transport across animal §k1|?, w'h}ch is oflefml
more permeable than the human integument. Mucromolecu_les delivered acros;;mmd
skin include: arginine-vasopressin (1.1 kDa) (97),.leuprohdc (1.2 kDaj (98, )rl '
calcitonin (3.5 kDa) (100), growth hormone releasing factor (3.9 k:Da) (IOI), car Z‘oxy-
inulin (5.2 kDa) (84), insulin (/02- 105), and bovine scrum albumin (8-?) (_Flggrelo;.
Notable exceptions include the clinical delivery of leuprolide 10 hum:an subjCC(7§3 :
107) and delivery of cytochrome ¢ (12 kDa) across human skin in vitro (II-SZ', ;iso
Delivery of leuprolide, a cholecyslokinln-S analogue (1.2 kDa), and ln’sy lndwerle, ‘hen
achieved across human skin in vitro, where detectable fluxes were measure )on y w'
jontophoresis was preceded by a two hour exposure to absolute ethanol (108, 109), a
process unlikely to find clinical acceptance.

Potential for Impact. Overall, the iontophoresis hterature shows that dcspllgl
success with unimal skin, clinically-relevant iontophoretic protocols have been capable
of transporting macromolecules across human skin in vcrylfcw cases. ‘Pﬁrh?s Ign
jontophoretic driving force coupled with a means o! rcycrsxb_ly altering lbe -bdlln :wml
barrier propertics (¢.g., chemical, clectrical, or ultrasonic) will be more broadly usctul.

Electroporation creates new transdermal pathways by disrupling 'hmd
bilayer structure. Short, high-voltage pulses which cause eleclropor'tmon drel l
known to transport large numbers of macromolccules across cell n‘\e‘mbrdn‘cgw)n hou
killing cells in vitro and in vivo. Rcccntly, electroporation of Ehe slr'alm'n L.om:L;)n,\ S
lipid bilayers was shown to occur and to increase rates o_f transdermal lransp’q ).,
orders of magnitude (110, 111). Subsequent studics indicate that clcclropoguon can
also enhance transdermal macromolecule delivery to clinically-relevant levels.

echanistic perspective. Electroporation (also called elevctrpp.crn}cuh(hzuuon)} is

bclli\gved to involee lhg creation of transient aqueous pathways in lipid bilayers by the
application of a short (s to ms) electric field pulse (112-114). Permeablhly and
electrical conductance of lipid bilayers are rapidly increased by many orders of
magnitude, where membrane changes can be reversible or lrrc;\'erSIblc, dependmgh )
mainly on pulse magnitude and duration. This phenomenon is known (o oFcur w L{ll
the transmembrane voltage reaches approximately 1'V for‘elecn"nclﬁeld pulses typically
of 10 ps to 100 ms duration when applied to bilayers in either living cells or ollow
metabolically-inactive systems (e.g., liposomes). During electroporation }hc 0,..0\7"@
sequence of events is believed to take place: (1) new aqueous pathways ("pores );re
created on a timescale of microseconds or less, (2) molecules are moyed throug!l ! )esi
pathways by diffusion and local electrophoresis and/or elec;rqosrnosn§, and (3) after the
pulse, pores close over characteristic times ranging from milliseconds to hours. e

Because the rate-limiting barrier to transdermal transport is the lipid bilayers of the
stratum comeum, electroporation of these bilayers could significantly increase drug‘
delivery across skin. A simple theoretical estimate indicates that ml_lllsccond&;ectnc
field pulses of approximately 100 V could electroporate the approximately 1 /s
multilamellar bilayers crossed in a path directly across the stratum corneum (111, 115,
116). Volages typically applied during iontophoresis (< 10 V) are cpnsnder?b!y lov:er,
but might be sufficient to electroporate a few bilayers, perhaps affc.:clmg the mm% o
appendages (79, 87). Experiments investigating skin electroporation usually apply a
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Figure 4. (A) Plasma insulin and (B) blood glucose concentrations following
insulin administration to rabbits. Diabetic rabbits were given insulin either by
subcutaneous injection (V) or transdermal administration using iontophoresis (4).
As controls, additional diabetic (O) and normal (8) rabbits received no treatment.
Tontophoresis was applied at 1 mA for 40 min using a pulsed waveform. Insulin
concentration was determined by radioimmunoassay. Standard deviation bars
are shown. Reproduced with permission from reference (96).

Copyright 1990 Elsevier Science - NL., The Netherlands.
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Figure 4B. Continued
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Figure 5. Transdermal heparin fluxes caused by electroporation or iontophoresis
of human skin in vitro. Heparin mass flux () was determined by scintiliation
counting measurements of radioactively-labeled heparin. Biological activity flux
(D) was determined by a blood clotting time assay. Heparin fluxes caused by
electroporation may be sufficient for clinical applications (126). Electrical
exposures were each 1 h of either continuous jontophoresis (0.1 or 1 mA/cm?) or
intermittent electroporation pulses (150, 250, or 350 V) each lasting 1.9 ms and
applied at a rate of 12 pulses per minute. Standard deviation bars are shown.
Asterisk indicates a flux below the detection limit (of order 1 pg/cm?h for
radioactivity measurements and 0.1 U/em?h for biological activity
measurements). Reproduced with permission from reference (/26).

Copyright 1995 Nature Publishing Company.
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series of pulses at rates of one pulse every five seconds 1o one pulse every five
minutes, where each pulse causes a transdermal voltage of 30 to 300 V and lasts for i
to 300 ms. Theoretical studies suggest that the described experimental findings could
be accounted for by electroporation of stratum corneum lipids (//5, 116).

Experimental findings. Electrical studies have shown that short, high-voltage
pulses can have dramatic and reversible effects on skin electrical properties. During a
pulse, skin resistance drops as much as three orders of magnitude within microseconds
(117, 118). Skin resistance then generally recovers by a factor of ten within
milliseconds, and exhibits either complete or partial reversibility within minutes. Skin
capacitance has been observed to increase by up to an order of magnitude and later
reverse 10 pre-pulse values (117, 119). Increased capacitance may indicate changes in
skin lipids, since skin's capacitance is generally attributed to stratum cormneum lipid
bilayers (80, 86). In contrast, these electrical effects are not observed during Jow-
voltage iontophoresis (82, 85-87, 120, 121).

High-voltage pulses also change skin transport properties such that up to 10,000-
fold increases in transdermal delivery occur for compounds ranging in size from small
ions to microspheres (111, 118, 122-136). Steady-state transport can be achieved in a
matter of minutes ( /30, 137). Complete or partial reversibility is gencraily observed
within an hour (171, 130). Microscopic imaging suggests that transport oceurs
through the bulk of stratum comeum via transcellular and intercellular pathways
estimated to occupy up to 0.1% of skin area (/38, 139). This observed transcellular
transport contrasts with the tortuous intercellular pathways of passive diffusion and the
shunt pathways of iontophoresis and liposomes. Limited work performed on hairless
rats indicates that large transdermal fluxes are also achieved in vivo, where no effects
beyond transient crythema and edema were observed (111, 123, 140). Additional
safety studeis are required.

The effects of high-voltage pulses have been attributed to short-lived changes in skin
structure (e.g., electroporation of stratumn corneum lipid bilayers) followed by
electrophoretically-driven transport across the skin. A number of studies indicate that
electrophoresis alone cannot explain the large flux increases observed during high-
voltage pulsing, supporting the hypothesis that skin structure is transiently disrupted
(111, 134, 136, 141). Other studies more specifically suggest that high-voltage pulses
can create enlarged transport pathways, the size of which is controlled by a voltage-
dependent mechanism (118, 126).

Skin electroporation can increase delivery of macromolecules to therapeutically-
useful rates across human skin. Transdermal transport of heparin (5 - 30 kDa) was
increased by electroporation in vitro to rates sufficient for clinical anticoagulation
therapy (/26) (Figure 5). Other studies have demonstrated electroporation-enhanced
delivery of arginine-vasopressin (/42), luteinizing hormone releasing hormone (1.2
kDa) (122, 140, 142), neurotensin (1.7 kDa) (142), and oligonucleotides (4.8 and 7
kDa) (/29). Increased penetration into skin has also been shown for latex
microspheres of up to micron dimensions (125, /39). These studies almost all
employed human skin in vitro.

Potential for impact. Electroporation's ability to both create new iransport
pathways and drive molecules through them has proved capable of delivering
macromolecules across skin, especially for highly-charged compounds which are
effectively moved by electrophoresis (e.g., heparin, oligonucleotides). This has the
potential 1o lead 1o a variety of clinical applications. Electroporation-mediated delivery
of macromolecules which carry a weak net charge, such as proteins, has not yet
received attention. Issues of safety and drug stability also need further study.
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raso c e al pathways b vitation. Ultrasound is
used extensively in clinical practice for applications ranging from diagnostic imaging to
therapeutic heating to lithotripsy procedures. Transdermal delivery enhanced by
ultrasound (sometimes called sonophoresis or phonophoresis) has received sporadic
attention for half a century, but has recently sparked renewed interest by studies which
demonstrate delivery of macromolecules at therapeutically-relevant rates (/43).

Mechanistic perspective. Ultrasound is a pressure wave having a frequency too
high to be heard by the human ear (> 16 kHz) (/44, 145). When introduced into the
body, ultrasound echoes off internal structures, thereby allowing diagnostic imaging.
Ultrasound conditions used by diagnostic instruments are typically very high frequency
(» 1 MHz) and low intensity (« | W/cm2), selected in part to prevent damaging imaged
tissue (/44, 146-150). Ultrasound under these conditions should have no effect on
skin properties.

Ultrasound applied at “therapeutic” conditions heats tissue. High frequencies (~ |
MHz) and moderate intensities (~ | W/cm?2) are typically employed in physical therapy
and cancer chemotherapy using ultrasonic hyperthermia (/44-150). These conditions
are favorable because they provide sufficient energy to heat tissue, even deep within the
body, without causing other effects associated with ultrasound at greater intensity or
lower frequency. Most studies using ultrasound to enhance transdermal drug delivery
have used therapeutic conditions (/51-156), in part because those intensities and
frequencies are already FDA-approved for clinical use. Ultrasonic heating of skin
could increase transdermal transport by fluidizing stratum corneum lipids and/or
increasing convective flow.

Ultrasound can also cause non-thermal effects such as cavitation. If applied at lower
frequencies (« 1 MHz) or greater intensities (» | W/cm?2) than used in therapeutic
applications, ultrasound can cause extensive generation of gas bubbles, called
cavitation (/44-150, 157, 158). Stable cavitation creates bubbles which oscillate in size
at the frequency of the applied ultrasound. Transient cavitation bubbles are short lived,
imploding violently upon their collapse. Both forms of cavitation can have severe
effects on biological tissue, as demonstrated by the shattering of kidney stones during
ultrasonic lithotripsy procedures (/50, 159, 160) and ultrasonic cell disruption
techniques commonly employed in research laboratories (150, 161). If applied to the

skin, significant changes in skin structure and permeability could resuli.

Experimental findings. Ultrasound has been used since the 1950's to enhance
transport of small drugs into and across skin for local delivery. Early clinical studies
showed increased absorption of hydrocortisone when accompanied by ultrasound at
therapeutic intensity and frequency (162, 163). Other clinical studies have described
local delivery of anesthetics, non-steroidal anti-inflammatories, antibiotics, and
antivirals (/5/-156). In addition to local delivery, systemic transdermal administration
of small drugs has also been enhanced by ultrasound. While some work has been
performed clinically (/64), most compounds have been examined through in vitro and
in vivo laboratory investigation (/65-170). These studies, in addition to others
performed outside the context of drug delivery, suggest that application of therapeutic
ultrasound to the skin is safe (146, 149, 150).

The mechanism(s) of ultrasonic enhancement remains controversial. While most
conclude that thermal contributions are small, evidence for increased convection (e.g.,
acoustic streaming or mixing) (165, 171) and for cavitation-mediated effects (165, 170,
172) offer compelling explanations for increased transport. Although many studies
have shown that therapeutic ultrasound can significantly enhance transdermal transport
(151-156), some studies report that ultrasound has no effect (173-175). A recent
analysis may reconcile these findings by identifying that studies which report no
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enhancement used compounds which are small (< 250 Da), while those wll;lct:)lecu'es
observed enhanced transport used ]mgerl_cqyp?#er;??r% Zf)z;anig?/urfgtSS;aSigr::iﬁcantly
diffuse easily through stratum corneum [1pids, be signieant ¥

i increases in lipid fluidity caused by ultrasound. Concerning
:?ﬂigﬁjﬂmg therapcutig ultrasound, studies suggest that compounds follow an

1 ar path (168). '

mul:)rgt\:/lllal:::;pf‘rlg;n( con)vcnlionul therapeutic ultrasounq, a few sludnets' hgve cllzgloly;:;])
lower frequencies (€.g., 20 - 100 kHz), which cause increased cavitation ( : 'anim.al
Enhanced delivery of lidocaine (178) and insuhn_ (172, 179) has been shor\lun lncmn o
models. Recently, transdermal delivery of insp]m. y-interferon, and' ert))'[l .r;)epdownh
kDa) was demonstrated using human skin in vitro, supported by data ol ai ed
hairless rats in vivo (/43) (Figure 6). Dclive'ry pf thesg: large.macro.mo. e/c;: ?showcd
rates sufficient for clinical applications. Preliminary hlistologlcal cxdmmaflfo howed .
no adverse effects (143, 180). In contrast to therapeutic ultrasound,»l.hlc):le bec;s
frequency ultrasound are believed make transcellular pathways accessibic by

mechanism involving cavitation (/80).

Potential for impact. Although useful for local and sysle‘m:jc dch;zg;]glf small
compounds, therapeutic ultrasound has not significantly increase lrﬁn:sound | been
transport of macromolecules. When applied at lower frcquencles,llll r sounc e o
shown to deliver large macromolecules across skin at lherapeyncaf y-Te Flow- .
Although only limited work has bqer} done so_fqr, the dramatl? elf ccr:§ccl)] o s close
frequency ultrasound suggest that it 1s a promising new approhac W dl
attention. Safety and drug stability concerns will require further study.
Discussion.

Methods of delivering macromolecules across skin which _hzlive been succ?rstiflejl each
provide a driving force for transport as well as modify skin's barrier prop: " .
Methods which do not alter skin's properties, such as passive ‘dlffu.su;]n’ an ] aker
jontophoretic enhancement by electrophoresis and/or electroosmosis, l‘;vemeans i
ability to transport large compounds. In contrast, barrier modlf)lcdat;.on yw e
electroporation or ultrasonic cavitation Increases macromoleculg e lvc_ry‘ 0
clinical interest. Disruption of the skin with chemicals can somet_lmes' incre e
macromolecule delivery, but generally only under conditions whlchlrdlscl: bdb );
concerns. Liposomes are an exception, since they deliver macr(?mo ecules l\)//)
mechanism which is not yet completely understood, but appears not to involve

modifying the skin barrier.

Introduction of electrical or ultrasonic energy into skin alters skin propg‘mcs asa
complex function of the energy input. As shown in Table I, lomoprc,jorﬁs'lr:iroduce
electroporation, therapeutic ultrasound and low-frequency ulf_rasoun_ a lln e
energy into the skin, but have very different effects on the skin barrier. Lvided S
macromolecule transport do not relate in a simple manner to the energy Prc()) Ve o e
skin. For example, therapeutic ultrasound supplies the greatest average p rat’ion N
the weakest effect. While the instantaneous power associated wnh' elcctr(;)plg)vcr on s
100-times greater than ultrasound, low-frequency ultrasound appears to ci lto chaﬁ o
macromolecules more effectively. Enhancement also does not relate simply ¢ g
in skin resistance. The effects of low-frequency ultrasound on skin reslslz;]m.(;:.alre
similar to those caused by iontophoresis, yet the abilities of these two mefl ods to
enhance macromolecule transport are very different. Clearly, the form o c;’ne;‘gy Citis
provided, and its microscopic distribution within the skin, are important. (:'rr ha_;; 3,
the delivery of short doses of highly Iocal'}uf.d energy that is most crfecuv‘chenluated )
achieved during electroporation, where millisecond-pulses of energy are ¢
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Figure 6. Transdermal delivery of insulin in the presence of ultrasound. (A)
The permeability of human skin in vitro to insulin as a function of uitrasound time (h)

intensity (at 20 kHz and 10% duty cycle). A permeability on the order of

10-3 cmvh may be sufficient to deliver insulin at clinically-useful rates (143). (B)
Blood glucose concentration in hairless rats. The blood glucose level in diabetic
rats was reduced to normal levels by application of ultrasound (225 mW/cm?,

20 kHz, 10% duty cycle, 30 min) to an insulin solution on the rat's skin (a). The
blood glucose levels of diabetic (0) and normal (0} rats which received neither
insuiin nor ultrasound remained constant. Standard deviation bars are shown.
Reproduced with permission from reference ({/43}.

Copyright 1995 American Association for the Advancement of Science.

Figure 6B. Continued
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